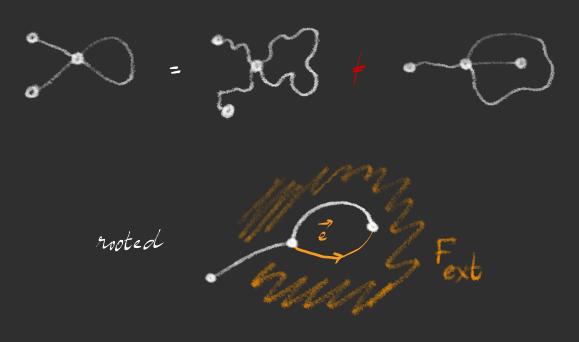
THE SCALING LIMIT OF THE VOLUME OF LOOP-O(2) QUADRANGULATIONS

I. General overview on rigid loop-O(n) quadrangulations

• PLANAR MAPS :



perimeter = $deg(F_{ext})$

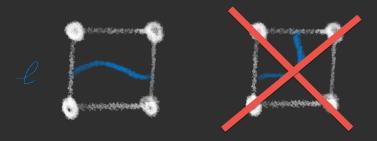
• QUADRANGULATIONS :

All internal faces have degree 4 Ì QUESTION How does the volume scale with perimeter?

· LOOPS :

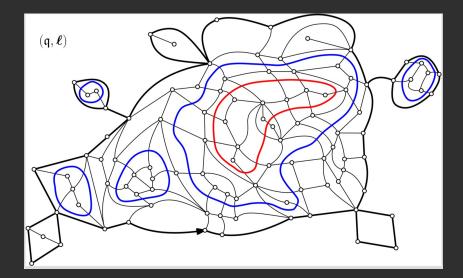
living on the faces of quadrangulation, disjoint and nested.

Rigidity Condition:



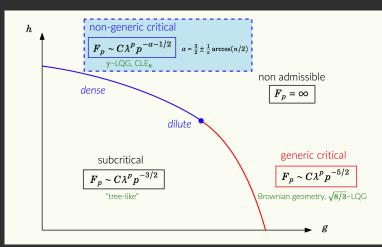
Notation

Op := { rigid loop - decorated quadrangulations with perimeter 2p }



ne(0,2], g, h≥0 LOOP - O(n) MODEL : g# h# h + loops $w(q, \ell) :=$ $W(q, \ell)$ $F_{p} := \sum_{(q,\ell) \in O_{p}}$ w (9, e) $\mathbb{P}^{(\mathcal{P})}(q,\ell) :=$ F measure when Fp < 00

• PHASE DIAGRAM.



 $\bigvee_{n < 2} \left[n < 2 \right]_{n < 2}$

- Main tool = "gastet decomposition" • Can take limit $n \rightarrow 2$ to get a "non-generic critical" model . $F_p \sim \frac{C \Lambda'}{p^2}$ or $F_p \sim \frac{C \Lambda'}{p^2} \log(p)$ 2. The volume of loop-O(n) quadrangulations: main results $(n; g, h) \in \mathbb{Q} \leftarrow non-generic critical line$
- VOLUME = number of vertices
- MEAN ASYMPTOTICS [Budd] $\overline{V(p)} = \overline{E}_{(n/g,h)}^{(p)} [V] \sim \Lambda p^{\Theta_{x}}$ where $\theta_{x} = \min(2, 2\alpha - 1)$ $\int 2 \quad dilute$

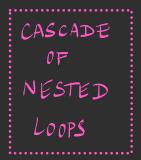
Remark :

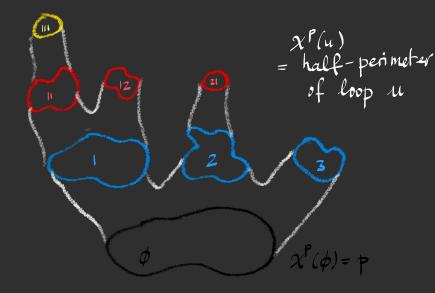
 $\mathcal{G}_{\alpha} = \int \mathcal{Q}_{\alpha} - \int$

olense

For
$$n=2$$
 we establish
 $\overline{V}(p) \sim \Lambda p^2$ or $\overline{V}(p) \sim \Lambda \frac{p^2}{\log(p)}$
MAIN RESULT
THEOREM [Aidékon, DS, Hu '24]
(i) When $n \in (0, 2)$,
 $\frac{V}{V(p)} \stackrel{(d)}{\rightarrow} W_{\infty}$
(ii) When $n = 2$,
 $\log(p) \cdot \frac{V}{V(p)} \stackrel{(d)}{\rightarrow} D_{\infty}$
CONJECTURED BY
(i) Chen - Currien - Maillard
(ii) Aidékon - DS



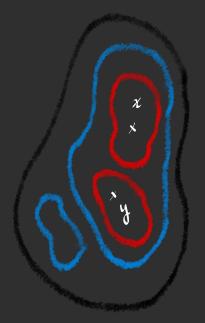




<u>THM</u> [Chen- Curien - Maillard '17] For $n \neq 2$, $\frac{1}{P}(\chi^{P}(u), u \in \mathcal{U}) \xrightarrow{d} (\overline{z}_{\chi}(u), u \in \mathcal{U})$ Γ_{χ} is the same as in the asymptotics of \overline{T}_{p}]

DESCRIPTION OF Z, ;

$$Z_{\alpha}(u) = \exp\left(BRW_{\alpha}(u)\right)$$

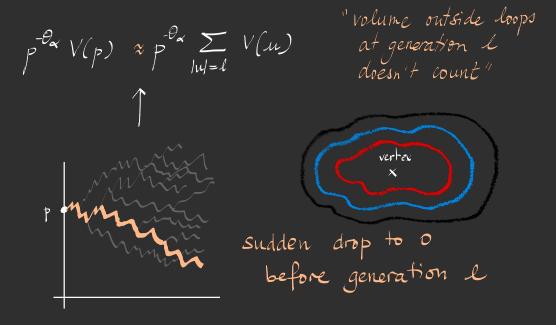


In the discrete : Around any vertex, we see a Markov chain corresponding to the (half) perimeters of the loops around that vertex.

we see a random walk around any point.

How do they behave?

HEURISTICS FOR OUR MAIN RESULT

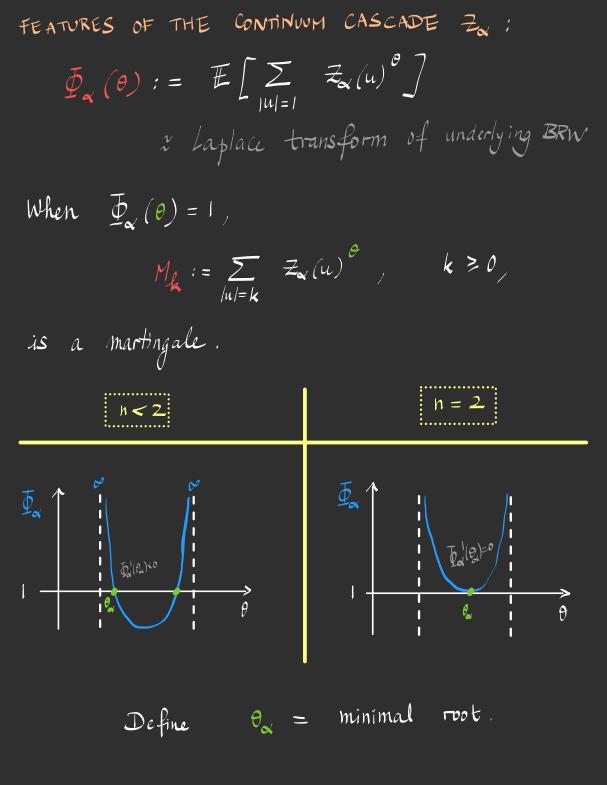


 $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\nabla}{|u| = l} = \frac{\nabla}{\nabla} (x(u))$ $x \Lambda \sum_{|u|=\ell} \left(\frac{\chi(u)}{p}\right)^{o_{a'}}$ $x \quad \Lambda \sum_{|u|=\ell} Z_{\alpha}(u)^{\Theta_{\alpha}}$ "convergence of the cascade" $\int \mathcal{L} \rightarrow \infty$ ΛW_{ω}

COMMENTS

Concentration is hard! (a)Second moment blows up: $\mathbb{E}\left[3^{2}\right] = \infty$ duration of Brownian cone excursion CLASSIFICATION INTO $V = V_{good} + V_{bad}$. (b) When n = 2, $W_{\infty} = 0$ a.s., so we end up with $P^{-2}V(p) \longrightarrow 0$ Need to introduce the

DERIVATIVE MARTINGALE



Introduce tagged particle:

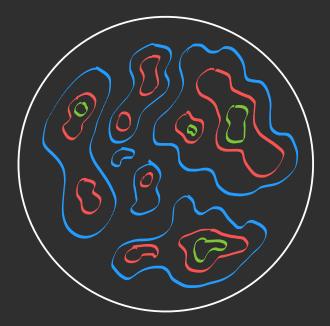
$$\Xi_{n}^{*} = \exp\left(\sum_{i=1}^{k} S_{i}^{*}\right) \quad \text{iid } S_{i}^{*}$$

$$E\left[F(S^{*})\right] = E\left[\sum_{i=1}^{m} Z_{n}(i) \stackrel{\Theta_{n}}{=} F(\log Z_{n}(i))\right]$$

$$\sum_{i=1}^{k} \frac{\Theta_{n}}{Z_{n}(i)} \stackrel{\Theta_{n}}{=} \frac{1}{Z_{n}(i)} \stackrel{\Theta_{n}}{=} \frac$$

INTERPRETATION :

Z^{*} describes behavior of a typical particle.



At each nesting level, pick one of the loops proportional to its (conditional) quantum area $\chi = \overline{z}_{\alpha}(i)^{\partial_{\alpha}}$

How does Z* behave? $\mathbb{E}\left[\underline{S}^{*}\right] = - \frac{\phi_{\alpha}'}{\phi_{\alpha}} \left(\frac{\theta_{\alpha}}{\phi_{\alpha}} \right)$ Note : • $n \in (0,2)$: $\mathbb{E}\left[\xi^*\right] < 0$ \Rightarrow typically, particles decay exponentially. • n = 2: $\mathbb{E}[S^*] = 0$ ⇒ not clear what happens. For n=2 the BRW is critical In that case : Use a truncation argument $(X^{P}(u) < B)$ to get size decay.

• remove truncation

logarithmic cast for	Y*+o stay	below a barrier:
$\mathbb{P}(T_a < T_b^+)$	$x \frac{-ln b}{ln a}$	a → 0 b → ∞

BUT

Need to deal with estimates for the discrete cascade (not the BRW) ! Use a coupling argument.